
 Paging and caching large record sets
Robert Stuttaford

Paging and caching large record sets

Welcome to our next foray into database driven ASP development. Today we're going to be looking at
viewing large record sets, and how to optimise this process both for the person doing the viewing and for the
server processing the page. To handle the former, we'll use a technique known as paging, and for the latter,
caching. This caching is not the client side browser caching we've all come to know and hate; this caching
is done entirely on the server. Let's jump right in!

Creating the page with the recordset

First off, we're going to create a simple page using Dreamweaver, which will use a standard Dreamweaver
connection to create a standard Dreamweaver recordset. We will then use a Server Behaviour to display the
contents of this recordset.

1. Create the connection

As in the previous tutorial, we're going to use a DSN (Data Source Name):

Create the DSN

- Copy the database file to your web server folder (It's in the link "Code download" below the
download buttons).

- Click Start > Programs > Administrative Tools > Data sources (ODBC)
- Select the System DSN tab, and click Add…
- Select the Microsoft Access Driver (*.mdb)
- Enter a name for your new data source. I've called mine PagingSample.
- Click the Select… button and browse to your copy of PagingSample.mdb.
- You should see the path to PagingSample.mdb above the select button. Click OK.
- Click OK to close the Data sources panel.

Before you can define a Connection with Dreamweaver, you will need to create a new Site first. If you have
not done so, be sure to do so now. (Molly Holzschlag has a tutorial on setting up your site, if you're unsure
how).

Create the Connection in Dreamweaver

- If your Application panel group is not visible, use Window > Databases to make it appear.
- Click the + icon in the Databases panel, and select Data Source Name (DSN) from the list.
- Enter a name for your new connection, I used PagingSample.
- Select your DSN from the drop-down list.
- Click the Test button. You should see a message: 'Connection was made successfully.'
- Click OK on the notification, and click OK again to save the new Connection.
- You should now see a Connection in the Databases panel.

And you're done! You should now be able to browse through the database's tables, views, and stored
procedures. This database contains a single table, Orders. For the sake of clarity, I haven't normalised the
data for this table.

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 1 of 10

http://www.dmxzone.com/go?6286
http://www.dmxzone.com/go?6286
http://www.dmxzone.com/go?5986

 Paging and caching large record sets
Robert Stuttaford

2. Create a Recordset

Now that we have a connection to the database, let's retrieve some data through it. We do this by creating
a recordset, which is a collection of rows or records, each containing a number of columns, or fields. These
row/column combinations each contain one distinct piece of data.

- Using the Insert bar, switch to the Application sub-set. Click the first icon in this group, Recordset.
- A Recordset dialog appears.
- Name the recordset 'Orders'.
- Select your PagingSample connection from the list.
- Select the Orders table from the Table list.
- For Columns, select 'Selected', and then holding down your Control key, click all but the Order ID

columns.
- Set Sort to sort by Order Date in ascending order.
- Click Test to see whether the SQL query returns data.
- Click OK to close the Test SQL Statement dialog, and click OK again to save your new recordset.

Excellent! Now we're ready to display some data.

3. Use a Dynamic Table to display the Recordset

Let's use two SB's to display the data in our new Orders recordset, and add paging capability:

- Go to Design view by clicking Design on the Document toolbar.
- On the Application Insert bar, click the down arrow on the third icon from the left. Select the first

option, Dynamic Table from the list.
- Name your new dynamic table 'OrdersView'.
- For 'Show', set it to display 2 records at a time. Why 2? Well, if it can work for 2 records, it can work for

10 or 20 or 50!
- Click OK to save the dynamic table.
- Again on the Application Insert bar, click the down arrow on the sixth icon from the left. Select the

first option, Recordset Paging from the list.
- Your Orders recordset should already be selected in the Recordset list. Set 'Display using' to Text.
- Click OK to save the recordset paging controls.

Right! We now have a paged recordset. The user won't have to wait minutes for the entire recordset load
into the browser. This makes browsing this data a more pleasant experience. And what's more, we got to this
point in less than 10 minutes! That's powerful.

However…

There is a catch. Dreamweaver inserted over 200 lines of code for this paging capability! What if this paging
technique is to be used on a public website, where usage could conceivably grow to thousands of users at
any given time? This code, however useful, is not optimal. Luckily, a lot can be done to fix this!

Apart from cleaning up this code, we'll also look at how to optimise this process from a logical standpoint (as
opposed to a technical one). If this page is to be used often, it is quite conceivable that the very same
recordset will be displayed to multiple users at a given time. If not, users who page back and forth between
subsets of their recordset (using the above paging code) still retrieve a fresh instance of that record set every
time they hit 'Next' or 'Previous'. Why not use one instance for the paging session instead? This will save
precious database connectivity resources.

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 2 of 10

 Paging and caching large record sets
Robert Stuttaford

To make this work, we'd have to make sure that a couple things are true. Firstly, this would only really provide
performance benefit if insertions and updates to this data are few, and views is high. Why? Well, every time
that the data changes, the cached instance of the recordset in memory is no longer consistent with the
data in the database. This means that we'd have to regenerate this cached copy if the data changes.
Couple that fact with a high change rate and you start to come back to the recordset being generated on
almost every page view.

Even so, if the change rate is moderate compared to the number of page views, there is still a performance
benefit. Let's look at how to implement this caching technique for a single user first.

Session based recordset caching

Unfortunately, to be able to cache data in the Session store (the area of memory dedicated to the user's
session), we need to transform the data in the recordset into intrinsic JavaScript objects, as we cannot
store the recordset (with all its data) itself in the Session store. Although there is a very slight performance hit
in doing this, implementing the caching which depends on doing so provides massive performance benefit.

FYI: JavaScript objects are basically named containers for variables. Objects can contain more objects,
which can contain more objects, each with their own variables, arrays, and so on. They basically provide a
way to structure information.

There is a useful side benefit too; the data becomes prepared for viewing only once. The catch: we will use
almost none of Dreamweaver's generated code. The only code we do use is the bit that creates the
recordset. The rest is hand-typed. As a consequence, you'll basically start with a new ASP JavaScript page.
Simply copy the code below into your document.

Here's the solution. There's a fair bit to go through here. If it looks daunting, skip ahead to the walk-through! I
urge you to read through it anyway, as this will make the walk-through an easier process for you.

<%@LANGUAGE="JAVASCRIPT" CODEPAGE="1252"%>
<!--#include file="../Connections/PagingSample.asp" -->
<%
function FormatShortDate (dateObject) {
 return dateObject.getDate() + "·" +
 (dateObject.getMonth()) +
 "·" + dateObject.getFullYear();
}

function FormatCurrency (value) {
 return "R" + value + ".00";
}

var orders, order;
var pageSize = 1, currentPage = 0, paging, nextPage, totalPages;
var orderIndex = 0, endPoint, recordCount;

if (Session("Orders") != null &&
 Application("ordersChanged") != "changed") {

 orders = Session("Orders");

 if (String(Request("page")) != "undefined") {

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 3 of 10

 Paging and caching large record sets
Robert Stuttaford

 currentPage = parseInt(Request("page"));
 }

} else {

 var ordersRS = Server.CreateObject("ADODB.Recordset");
 ordersRS.ActiveConnection = MM_PagingSample_STRING;
 ordersRS.Source = "SELECT OrderDate, Client, Value, Products FROM Orders ORDER BY
OrderDate ASC";
 ordersRS.CursorType = 0;
 ordersRS.CursorLocation = 2;
 ordersRS.LockType = 1;
 ordersRS.Open();

 orders = new Array();

 while (!ordersRS.EOF) {

 order = new Object();

 order.OrderDate = FormatShortDate(new Date(ordersRS("OrderDate")));
 order.Client = String(ordersRS("Client"));
 order.Value = FormatCurrency(parseFloat(ordersRS("Value")));
 order.Products = parseInt(ordersRS("Products"));

 orders.push(order);

 ordersRS.moveNext;
 }

 ordersRS.Close();

 Session("Orders") = orders;
}

recordCount = orders.length;
paging = recordCount > pageSize;

if (paging) {

 nextPage = currentPage + 1;
 totalPages = Math.ceil(recordCount / pageSize);

 orderIndex = currentPage * pageSize;
 endPoint = orderIndex + pageSize;

 if (endPoint > recordCount) {
 endPoint = recordCount;
 }

} else {
 endPoint = recordCount;
}

%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 4 of 10

<html xmlns="http://www.w3.org/1999/xhtml">

 Paging and caching large record sets
Robert Stuttaford

<head>
 <title>Untitled Document</title>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
 <table width="400" border="0">
<%
if (paging) {
%>
 <tr>
 <td colspan="4" align="center">
<%
 if (currentPage > 0) {
%>
 <a href=" PagingSample.asp?page=<%= currentPage - 1 %>">Previous
<%
 }
 if (nextPage < totalPages) {
%>
 <a href=" PagingSample.asp?page=<%= nextPage %>">Next
<%
 }
%>
 </td>
 </tr>
<%
}
%>
 <tr>
 <th align="left">Order Date</th>
 <th align="left">Client</th>
 <th align="center">Value</th>
 <th align="center">Products</th>
 </tr>
<%
orderIndex--;
while (++orderIndex < endPoint) {
 order = orders[orderIndex];
%>
 <tr>
 <td><%= order.OrderDate %></td>
 <td><%= order.Client %></td>
 <td align="right"><%= order.Value %></td>
 <td align="right"><%= order.Products %></td>
 </tr>
<%
}

%>
 </table>
</body>
</html>

Okay! Let's go through it step by step.

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 5 of 10

 Paging and caching large record sets
Robert Stuttaford

1. Workspace

First off, we define some formatting functions (for dates and currencies), and define all of the variables we'll
need. Notably, we set up currentPage and orderIndex with their initial values (both 0), and we set up
pageSize with the number of items we want to display per page.

Note - the formatting functions here aren't intended for production use, I include them merely to illustrate
that these can exist, and can provide any formatting function, however simple or complex.

function FormatShortDate (dateObject) {
 return dateObject.getDate() + "·" +
 (dateObject.getMonth()) +
 "·" + dateObject.getFullYear();
}

function FormatCurrency (value) {
 return "R" + value + ".00";
}

var orders, order;
var pageSize = 2, currentPage = 0, paging, nextPage, totalPages;
var orderIndex = 0, endPoint, recordCount;

2. Determine where to get the data from

Next up, we need to determine in some way whether or not to retrieve the data from the database or from
the cached copy in Session. Determining this is quite easy: if the cache doesn't exist, create it. Additionally,
the cache could exist, but the data it contains could be out-of-date. To determine this, we check an
Application variable (which is accessible from all sessions in the application) named OrdersChanged for the
value 'changed' to see if some other process has modified this data. Obviously, you would have to set this
variable to 'changed' in any script you write that modifies this data in the database.

if (Session("Orders") != null &&
 Application("OrdersChanged") != "changed") {

3a. Retrieve cached data

If we find that the data in the cache is still good, we create a local (to the script) reference to it. Additionally,
we check to see if we've received page via the query-string, and if so, we parse it as a number to our local
currentPage variable. Doing the page check inside this branch, instead of as a part of the if statement
above, allows users coming back to the page from another page to make use of the cached data.

 orders = Session("Orders");

 if (String(Request("page")) != "undefined") {
 currentPage = parseInt(Request("page"));
 }

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 6 of 10

 Paging and caching large record sets
Robert Stuttaford

3b. Retrieve and cache data from database

If the cache is nonexistent or invalid, we create our recordset as before.

var ordersRS = Server.CreateObject("ADODB.Recordset");
 ordersRS.ActiveConnection = MM_PagingSample_STRING;
 ordersRS.Source = "SELECT OrderDate, Client, Value, Products FROM Orders ORDER BY
OrderDate ASC";
 ordersRS.CursorType = 0;
 ordersRS.CursorLocation = 2;
 ordersRS.LockType = 1;
 ordersRS.Open();

We then define an empty array (or numbered list) container and loop through the recordset:

orders = new Array();

 while (!ordersRS.EOF) {

This next bit of code displays JavaScript's amazing flexibility when it comes to representing data. We are able
to define arbitrary containers (objects) and assign values to named properties of these objects. Using the
formatting functions defined above for the Order Date and Value columns, and String for the rest, we set
named properties for the order object.

 order = new Object();

 order.OrderDate = FormatShortDate(new Date(ordersRS("OrderDate")));
 order.Client = String(ordersRS("Client"));
 order.Value = FormatCurrency(parseFloat(ordersRS("Value")));
 order.Products = String(ordersRS("Products"));

Doing this is vitally important! If we simply assigned from the recordset column directly to the object property,
it would attempt to store a reference to that particular row/column combination in the recordset object. This
means that once we've closed the recordset, that reference will be broken, which is not a good thing for a
caching implementation!

We then use the Array.push() method to add the new order object to the end of the array, and move to the
next record in the recordset. That finalises the loop. After the loop, now that we have transformed all the
data, we close the recordset, and add a reference to the array to the Session:

 orders.push(order);

 ordersRS.moveNext;
 }

 ordersRS.Close();

 Session("Orders") = orders;

And caching is done! Next, we have to determine whether or not we need to page this data.

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 7 of 10

 Paging and caching large record sets
Robert Stuttaford

4. Determine if paging is necessary

Now that we have an idea of how many records there are, we can determine whether or not to page the
data. Firstly, we set recordCount to be the number of records in the set:

recordCount = orders.length;

Then we store whether or not we have to page the data as a Boolean or true/false value, named paging.
We derive this value by comparing the relationship between our recently new recordCount and our
constant pageSize. If recordCount is bigger than pageSize, or put differently, if the total number of records in
the set exceeds the number of records displayed per page, paging will be set to true.

paging = recordCount > pageSize;

5. Configure render loop boundaries

Next, if paging is true, we need to configure the variables used to display Next and Previous links and set the
range for the render loop.

Firstly, we store the index of the next page into nextPage. Next, we determine totalPages, the total number
of pages for the data set. To get this we divide recordCount by pageSize, and round up to the nearest
integer. That way, with a page size of 5 and a record set of 12, the third page will only display 2 records. If we
rounded down, we wouldn't see these last 2 records.

if (paging) {

 nextPage = currentPage + 1;
 totalPages = Math.ceil(recordCount / pageSize);

Next we configure the initial value for orderIndex, the render loop's iterator (variable that increments by one
every loop). We do so by setting it to the current page's index multiplied by the page size. It is for this reason
that currentPage is initially set to 0; 0 x 5 is still 0, which is exactly where we want to be for the first 5 records.

Then we set endPoint, the upper boundary for the loop, which determines when the loop should end. We set
it to be the current orderIndex plus one page's worth of records, thus, our page size.

 orderIndex = currentPage * pageSize;
 endPoint = orderIndex + pageSize;

Finally, just in case we happen to be on the last page, we make sure that endPoint isn't larger than
recordCount. This could happen quite easily, as we are using multiples of pageSize to determine endPoint,
and recordCount is not necessarily a multiple of pageSize.

If paging is false, however, we still need to configure endPoint so that the render loop can function correctly.
We do not need to set orderIndex as it is already set to 0 (see the step 1).

} else {
 endPoint = recordCount;
}

Now that all of our data has been prepared, we're ready to begin rendering the HTML. There are two steps
to this, rendering the Next and Previous links, and rendering the data itself.

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 8 of 10

 Paging and caching large record sets
Robert Stuttaford

6. Display paging links

This section would only render if paging is true.

<%
if (paging) {
%>

If so, we determine if we display the Previous link first. We display it if currentPage is bigger than 0, indicating
that we are currently viewing page 2 or higher. We set the Previous link to open the same page with the
page querystring variable to equal currentPage minus one.

<%
 if (currentPage > 0) {
%>
 <a href="PagingSample.asp?page=<%= currentPage - 1 %>">Previous
<%
 }

Similarly, we check if we need to display the Next link, by checking whether nextPage is smaller than
totalPages. The logic here is, if the next page's index is smaller than the total number of pages, we are not
currently on the last page. The reason for this is that our currentPage variable starts counting from 0 based
whereas our totalPage starts counting from 1. If this is the case, we render the Next link in the same fashion as
the Previous link, using nextPage as our page querystring variable.

if (nextPage < totalPages) {
%>
 <a href=" PagingSample.asp?page=<%= nextPage %>">Next
<%
 }
%>

7. Render the data

Finally! After all that work, we can now display the data. Firstly, we decrement orderIndex by 1. You'll see
why in a bit. Next, we start the loop:
<%
orderIndex--;
while (++orderIndex < endPoint) {

As you can see, we increment orderIndex by one and then check to see if it is less than endPoint. The
important bit here is that orderIndex increments before the comparison, not after, as with a traditional for
loop. We do it this way to reduce the number of calculations in the comparison stage of the loop. Bear with
me!

If we increment orderIndex after the comparison, we wouldn't see the last record in the range, because
we'd reach our endPoint one loop too quickly. Ok, so we can increment endPoint by one before the loop.
But have a look at the next line of code, the one which retrieves the record from our orders array:

 order = orders[orderIndex];
%>

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 9 of 10

 Paging and caching large record sets
Robert Stuttaford

Copyright © 2004 DMXzone.com All Rights Reserved
to get more go to DMXzone.com

Page 10 of 10

The way we have it now, orderIndex is perfectly positioned to begin with the right record. If any of this
doesn't make sense to you, I urge you to play around it and see how these variables interact. Anyhow, this is
why we decrement once before we begin the loop.

To continue, as seen above, we create a local (to the loop) reference, order, to the current record, based
on orderIndex. We then render out the HTML table row, using those nice easy to read names we assigned
each field earlier.

 <tr>
 <td><%= order.OrderDate %></td>
 <td><%= order.Client %></td>
 <td align="right"><%= order.Value </td> %>
 <td align="right"><%= order.Products %></td>
 </tr>

We close the loop, and render out the remainder of the HTML for the output. Voila! A cached, paged
recordset viewer!

Conclusion

Today, you learnt how to use Dreamweaver Server Behaviours to achieve recordset paging in record time.
You then learnt how that speed came at a cost; processing time.

Of course, if your Dreamweaver Server Behaviour page is to be used on a site which has 50 viewers a day,
this is not a problem. 5000 viewers however will start to cause the web server some strain. Just for interest's
sake, the hand-coded script is 124 lines, and the Dreamweaver page is 252 lines. The hand-coded script is
half as big but provides easily 4 times the benefit!

You learnt about the benefits of caching data in server memory, and invalidating this data whenever
updates happen to the database. Finally, you were led by the nose through a working example of hand-
coded session based caching and paging. I hope you understood everything, as the techniques described
above have helped me streamline growing web applications tremendously! Again, I urge you to grab the
sample files, break them, make them work again, plug your own data in, go mad. The best teacher is play!

	Paging and caching large record sets
	Creating the page with the recordset
	1. Create the connection
	2. Create a Recordset
	3. Use a Dynamic Table to display the Recordset

	However…
	Session based recordset caching
	1. Workspace
	2. Determine where to get the data from
	3a. Retrieve cached data
	3b. Retrieve and cache data from database
	4. Determine if paging is necessary
	5. Configure render loop boundaries
	6. Display paging links
	7. Render the data

	Conclusion

